$\begin{array}{c} {\rm MA114~Summer~2018}\\ {\rm Worksheet~11-Alternating~Series-6/26/18} \end{array}$

1. (a) Let $a_n = \frac{n}{3n+1}$. Does $\{a_n\}$ converge? Does $\sum_{n=1}^{\infty} a_n$ converge?

- (b) Give an example of a divergent sequence $\sum_{n=1}^{\infty} a_n$ where $\lim_{n\to\infty} a_n = 0$.
- (c) Is there any example of a convergent sequence $\sum_{n=1}^{\infty} a_n$ where $\lim_{n\to\infty} a_n \neq 0$?
- (d) Suppose we have an alternating series $\sum_{n=1}^{\infty} (-1)^{n+3} a_n$, where $a_n \ge 0$. Is it possible that the series diverges?
- 2. Decide whether the Alternating Series Test can be used to show that the following series converge. If it cannot, explain why and if possible use a different test to determine whether the series converges or not.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{1+2n}$$

(b) $\sum_{k=2}^{\infty} (-1)^{k+1} \frac{1}{\ln(k)}$
(c) $\sum_{m=2}^{\infty} \frac{3^m}{4^m + 5^m}$
(d) $\sum_{n=2}^{\infty} (-1)^n \frac{n}{\ln(n)}$
(e) $\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2(n)}{n}$
(f) $\sum_{i=1}^{\infty} \left(\frac{-5}{18}\right).$

3. Estimate the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{8^n}$ correct to three decimal places, i.e. so that the absolute error is at most 0.0005.